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Flow equations for the Anderson Hamiltonian 
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Received 21 February 1994 

Abstract. Using a continuous unitary transformation recently proposed by Wegner [l] together 
with an approximation that neglects irrelevant contributions, we obtain flow equations for 
Hamiltoniam. These flow equations yield a diagonal or almost diagonal Hamiltonian. As 
an example we investigate the Anderson Hamiltonian far dilute magnetic alloys. We study the 
different fixed points of the flow equations and the corresponding relevant. marginal or irrelevant 
contributions. Our results are consistent with results obtained by a numerical renormalizadon: 
group method. but our approach is considerably simpler. 

1. Introduction 

Recently Wegner [I] developed a method to obtain flow equations for Hamiltonians. These 
equations result from a continuous unitary transformation that brings the Hamiltonian closer 
to diagonalization. The continuous unitary transformation generates a Hamiltonian H ( e )  
from an initial Hamiltonian H(0) .  It may be written in the form 

where ~ ( t )  is an anti-Hermitian operator depending on e as well. Assume that H is written 
in the form H = Hd + Hr. Hd is a Hamiltonian that can be diagonalized whereas H' 
contains further terms which are not simple. We now try to choose q such that H'(2) tends 
to zero as e goes to W. Wegner proposed 

7 = [H, H T ] .  (1.2) 
With this choice of 7. H' does not necessarily vanish for t + 00, but q vanishes in 
this limit so that H can be diagonalized up to degeneracies of eigenvalues of Hd. Notice 
that of course the method of unitary transformations of a Hamiltonian is perfectly well 
known in solid-state theory, in particular to study non-perturbative effets. However, it 
is usually non-trivial to find these unitary transformation. With Wegner's choice of r j  in 
(1.2) one has a general framework to construct such unitary transformations that make 
Hamiltonians 'simpler'. One seems to recover a lot of standard unitary transformations in 
this way. A well known example is the Schrieffer-Wolff transformation [Z]. The connection 
between the unitary transformation induced by the flow equations and the Schrieffer-Wolff 
transformation will be discussed in section 4. 

It is clear that it is in general impossible to solve the full Row equations for a given initial 
Hamiltonian. The situation is even worse. If we consider for example an initial Hamiltonian 
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describing electrons on a lattice with a given two-particle interaction, the flow equations 
generate additional interactions among three and more particles. Wegner showed that in the 
case of an n-orbital model in the l i t  n + ca. the equations for the two-particle interaction 
are closed. This fact allowed him to solve the flow equations for a onedimensional model 
in the limit n + W. Then it is possible to perform a I/n-expansion. 

In the present paper we introduce an approximation to the flow equations which allows 
one to treat a large class of models. The approximation consists of neglecting those contribu- 
tions on the right-hand side of (1.1) which are of a form different from the terms in the initial 
Hamiltonian X(O), e.g. the terms generating three-particle interactions mentioned above are 
neglected. Then one obtains a set of differential equations which can be analysed. In a 
second step one can now add different contributions to the Hamiltonian in order to study the 
effect of the terms neglected before. If such a contribution changes the Hamiltonian for large 
.?, significantly, it is relevant and must  be^ included. If it does not change the Hamiltonian for 
large it is irrelevant. As we will see, it is also possible that such an additional contribution 
does not change the original terms in the Hamiltonian, but that it does not vanish either 
for large e. In this case the contribution is called marginal. After having solved the flow 
equations, the goal is to find all the relevant and marginal contributions to the Hamiltonian. 

In order to show how this method works, we investigate the Anderson model for dilute 
magnetic alloys [3]. It describes electrons on a lattice with a single defect state. The 
Hamiltonian contains the kinetic energy of the electrons moving on the lattice, the energy of 
the defect state, a hybridization of the states in the band with the defect state, and a (usually 
repulsive) interaction of electrons in the defect state. For an excellent overview on this 
model and the results obtainable by different methods see 141. In a certain l i t  this model 
is solvable using a Bethe ansatz. Furthermore, it has been investigated by Krishnamurty etal 
[SI using a numerical renormalization technique. We compare our results with some of the . 
results in [SI. Especially we will see that the flow equations yield ‘fixed points’ similar to 
the fixed points found in [5] and that the operators which are relevant (marginal, irrelevant) 
in our approach are relevant (marginal, irrelevant) in the renormalization-group approach as 
well. We will come back to the connection to renormalization techniques implied by our 
suggestive use of language later. 

Our paper is organized as follows. In the next section we give a more detailed description 
of the method. After that we derive the flow equations for the Anderson model and we 
discuss the explicit structure of these equations in detail. The fixed points of the equations 
are described. We also present numerical solutions of the equations. In section 4 we 
discuss possible relevant and irrelevant contributions to the original Hamiltonian, and in 
section S we compare our results for the Anderson model with the results of [SI. Finally 
we summarize our results and briefly discuss possible further investigations. 
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2. The method 

The main part of the method is already described by (1.1) and (1.2). It has been explained 
in detail by Wegner [l] .  But since it kno t  yet well known and since we introduce a new 
approximation not used in 111, we want to point out some useful properties of the flow 
equations. To do this, let H = (hn.q) be a real, symmetric N x N-matrix and H d  be its 
diagonal part. H‘ contains the off-diagonal matrix elements. Then the flow equations for 
H ( e )  can be written in the form 
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and 

qk,q(e) = (hk.k(e) - hq,q(O)hk,q(e) (2.2) 

so that we obtain 

(2.3) 

In the sequel we will not explicitly write down the e-dependence of the matrix elements of 
H and q ,  Since qk,q = -qq,k, (2.1) describes a continuous unitary transformation of H. 
The quantities Tr(H") do not depend on e. To study other properties of the flow equations 
(2.3), let us calculate the derivative of Et+, h:,y: 

-= dhk'q(e) z(hk.k(e) i- hq,q(e) - 2hp.,(e))hk,p(e)h,.q(e). 
P 

de 

d C h : , , = - -  d ':,k 
de k#Q de k 

Ekiq hf, is a monotonously decaying function of e. Since it is bounded from below, its 
derivative with respect to e vanishes if e tends to infinity. This shows that, as already 
mentioned in the introduction, qk,q vanishes in the limit e + 00. Therefore, in the limit 
L + bo, we obtain a marrix H that commutes with its diagonal part Hd. This means that 
up to degeneracies in Hd the matrix H has been diagonalized. Clearly it is unfortunately 
not possible to solve the flow equations (2.3) analytically. 

In this paper we introduce an approximation to the flow equations (2.1) and (2.2). In the 
first step in this approximation we assume that a class of matrix elements may be neglected 
if these matrix elements are zero initally. Suppose that the matrix elements of H are divided 
into two classes, C(') and C@), such that the matrix elements in C'2) vanish for e = 0. The 
approximate flow equations are obtained from (2.3) if we put h ~ , ~  = 0 if hk,( E C(2'. In 
the case of an arbitrary matrix H such an approximation is perhaps not very useful, since 
it is difficult to estimate the error. But if we study the problem of, for example, interacting 
electrons on lattice, we usually start with an idealized Hamiltonian that contains a kinetic 
energy and a simple interaction. Multi-particle interactions or slight modifications of the 
kinetic energy are usually not expected to play an important role, and if they do so the 
model has to be modified. Therefore we expect that the physical behaviour of the model 
does not change too much if we neglect matrix elements~corresponding to connibutions to 
the Hamiltonian not included initially. Nevertheless, it would be desirable to have more 
general statements about the validity of this approximation. 

Let us for a moment assume that initially the off-diagonal matrix elements are small, 
such that a usual perturbational treatment of N' is justified. In this case it is possible to 
solve the flow equations (2.3) iteratively. As a first approximative solution we take 

= hk.q(0)eXP(-(hk,k@) - hq,q(o))2e). (2.5) 

The (n + 1)th approximation is now obtained from the nth approximation if we put 

-- dht:" - c ( h t i  + hg$ - 2h(") P.P )h(") k.p h(") p.4 '  (2.6) 
de p 
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In the case n = 1 the right-hand side is easily integrated and we obtain 
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which is equivalent to the result obtained from ordinary perturbation theory. 
In our approximation we neglected matrix elements h k , q  E 0') for which hk,q(0) = 0. 

Since they do not contribute to the right-hand side of (2.8). our approximation agrees with 
a perturbational treatment up to second order in H'. But it is not necessarily restricted to 
the regime where perturbation theory is valid. 

The choice of C(') above is completely arbitrary, and in the following we will choose 
C(') almost as large as possible. The question is then whether or not the terms neglected 
are relevant in the sense that they alter the solution significantly. In the second step in our 
method we then investigate this problem by simply moving some of the elements of to 
C(') and trying to analyse the new flow equations. In this way different new contributions 
to the Hamiltonian will be treated and for each of them we try to find out whether it is 
relevant or not. 

3. Flow equations for the Anderson model 

3.1. The model 

The Hamiltonian of the Anderson model in a normal-ordered form is given by [3] 
H = x E k  : CL,&k,,, : +E& : dAd, : +c !4(: cl.,d, : + : dAck,, :) f L  1 didld-d, : . 

k . n  (r k." 

(3.1) 
The first term represents the kinetic energy of the band electrons. In addition there is 
a defect state. It hybridizes with the conduction electrons. Since the phase of C K , ~  is 
arbitrary, we choose VK 2 0. In a more general model, there will be many defects in the 
lattice and the defect states will be degenerate. Here we treat only the simplest case, a 
single, non-degenerate defect state. Electrons in the defect state interact due to the on-site 
Coulomb repulsion. This is described by the fourth term in (3.1). Normal order is defined 
by substracting the ground-state expectation values of the Hamiltonian with Vk = 0: 

(3.2) 

: dAd, := dAd, - nd (3.3) 

n k  e ( 6 F  - 6 k )  (3.4) 

. I  i . Ck,,,Ck.r := Ck,nCk,r - nk 

where 

and 
I n d  = i ( e ( 6 F  - Ed) f e(6F - Ed - (I)) . 

Zd is given by 

4 = 6d + ndli 
where 6d is the energy of the single occupied defect state. 
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3.2. The flow equations 

We now set 

H‘ = c Vl(: cL,odG : + : dACk.o :) . (3.7) 
k.n 

In the spirit of our approach it would of course be desirable to set VL = v k .  But we will 
later see that this is too restrictive in some cases. Still one can always think of VL = v k  for 
nearly all values of k .  q may be written as 

dated easily, 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 
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To obtain the flow equations for the matrix elements of H one has to compare the different 
terms on the right-hand side of (3.12) with H. For instance, the second term in (3.12) is 
the only term that contributes to the derivative of EX with respect to e, 

All the terms containing : dhd, : contribute to the derivative of ?d with respect to e. But, 
since = Ed + ndi/ and nd eventually changes with e, there is an extra contribution 
Udndlde. Therefore 

Similarly we obtain 

and 

(3.15) 

(3.16) 

We will now analyse these equations. 

3.3. The symmetric case 

If er-k = -Ek,  Vr-t = Vk, z d  = 0, EF = 0, Ed = 4, the Hamiltonian is invariant under 
particlehole transformations 
ck,n t + -Cr-k.s ck.s + -Cr-k,, t d: -+ dv do + 4. (3.17) 

We choose v k  = V; and obtain 

(3.18) 

Due to the particle-hole symmetry ?d remains zero. The equations (3.18) show that Vk 
tends to zero for all k, whereas [ U1 and [ € k [  increase. For the density of states at the Fermi 
level EF = 0, 

we obtain 

(3.19) 

(3.20) 

Here V is the initial value of vk for those k with E X  = 0. The density of states in the middle 
of the band decreases, but it does not vanish unless U = 0. 

The case U = 0 must be treated seperately. In this case we obtain 
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and vk(m) = 0 if Ek(CO) # 0. If vk # 0 for such k with <k near the Fermi energy, we obtain 
a finite gap in the energy band with some states in the middle of the gap. A gap does not 
show up for a single impurity in the thermodynamic limit, since Vk - where Ns is the 
number of lattice sites. On the other hand, a system with a small but finite density of defects 
behaves like a system with a single defect in a finite volume, the volume per defect. The 
gap would be of the order of the density of defects. This result is presumably an artefact 
of our approximation, since for U = 0 the equations (3.18) decouple. If Ek is near the 
Fermi energy, vk tends to zero quite slowly and therefore other matrix elements neglected 
so far are important. Furthermore, the result for U = 0 is not stable with respect to small 
changes of the Hamiltonian. If one introduces, for example, a non-vanishing interaction U ,  
the system has no gap, as expected. 

3.4. The asymmetric case 

In general the system has no particle-hole symmetry. The flow equations are given by 
dEk 

d l  
(3.22) -=22(Ek--d-ndU)VkVi 

(3.23) 

dU 
de 
- = 4U VkVi 

k 
(3.25) 

Now vk does not necessarily vanish for all k and we have to choose 

v; = g; vh (3.26) 
where 

(3.27) 
g; = 1 otherwise. 
With this choice of VL we ensure that the right-hand side of (3.25) vanishes for e + W. 

Otherwise U becomes infinite for e + CO. Such a divergence is typical for approximate 
flow equations. A similar divergence also occured in the paper of Wegner [l]. It is clear 
that the original equation (1.1) contains no such divergences since it describes a continous 
unitary transformation of the Hamiltonian. But it is always possible to choose H' such that 
it vanishes for e + 00, and with such a choice no divergences occur. 

We have to distinguish four possible cases. 
(1) lid = 4 for e + CO. This case is similar to the symmetric case discussed above. All vk 

vanish, [U1 increases and the energies ~k and ~d are renormalized. The defect state is 
occupied with a single electron, it has a magnetic moment. This case is therefore called 
the local-moment fixed point. 

(2) nd = 0 or nd = 1 for e + 00 and g;: = 0 for some k. In this case the corresponding 
vk do not vanish. There is a non-vanishing coupling of the defect state to the states in 
the band for which Ek = Ed f n d u .  Since the corresponding Vi is zero, only the second 
term in (3.24) contributes and IVk increases. This case is called the strong-coupling 
fixed point. 

if ( E k - E d - n d ( l ) * + n d ( l - n d ) U z ~ O  for e + m  g; = o  
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(3) n d  = 0 or nd = 1 for t -+ 00 and g; # 0 for all k.  In this case Ed and Ed + U are both 
above (for tLd = 0) or below (for l l d  = 1) the band. The defect state is decoupled from 
the band and the electrons in the band behave like free electrons. This case is called 
the free-electron fixed point. 

(4) The non-interacting case with Itd = 0, n d  = 4,  or nd = 1.. ~n this case U = 0 and vk 
vanishes if 6 k  # &. 

The above-mentioned fixed points are not fixed points in the sense that all the parameter 
of the model are fixed. They merely describe classes of parameters which show a similar 
physical behaviour. The main question is into which of the four classes the system falls, 
depending on the initial Hamiltonian. The last case is simple since it describes an instable 
fixed point of the flow equations. Only if U = 0 initially it remains zero for all e .  The 
other fixed points are more interesting, we will discuss them in detail. 

The first case is the local-moment fixed point, where nd = 4, e.g. 6d < EF and 
Ed + U > EF (the case Ed > EF and Ed + U < EF is similar). We shall assume that U 
is not too small initially. Now the last term in (3.24) is the most important term. Using 
U 3 U ( 0 )  it already yields the estimate 
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v k  < Vk(0)exp ( -  t ~ ' ( o ) t ) .  (3.28) 

Inserting this in (3.25) we obtain 

(3.29) 

In a typical situation, 
we obtain 

Vi(0)/U2(O) is of order 1 or smaller. Now, if I Q  - Cd - < ck 

(3.30) 

This shows that 6k does not change very much. Therefore if we start with a symmetric 
conduction band, it remains essentially symmetric and 6l.V; sz 0. Consequently the 
right-hand side of (3.23) is negative and Ed remains below E F .  Only if the conduction band 
is strongly asymmetric, may the system behave differently. The derivative of dd + U 
is approximately given by c k ( E d  + (1 - ndU)v,2. Thus if Ed becomes of the order 
-(1 - p/2)U, where p is the density of electrons, Ed + U decreases and the system may 
change to a state where Ed = 1. Otherwise it remains in a state with Izd = 1 The precise 
values of the parameters where the transition occurs cannot be determined using the rough 
estimates above. 

The situation becomes more complicated if initially l ld  = 0, i.e. Ed > EF and E d + U  > E F .  
If Ed is only slightly above EF, the right-hand side of (3.23) will still be negative so that Ed 
decreases below CF. Then nd = 4 and the system rests in the local-moment fixed point. On 
the other hand, if Ed > U and if we start with a symmetric conduction band, the right-hand 
side of (3.23) is positive and Ed increases. Somewhere between these two possibilities there 
must be a transition where the system, depending on the inital values of the parameters, 
switches from the local-moment fixed point to a fixed point with tLd = 0. The question, 
whether this fixed point is the free-electron fixed point or the strong-coupling fixed point, 
cannot be decided easily. 

Numerical solutions of the equations are presented below; they confirm this qualitative 
discussion. 

2: 
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3.5. Numerical results 

We have implemented an adaptive stepsize fifth-order Runge-Kutta algorithm to solve the 
flow equations (3.22)-(3.25) numerically. All calculations were performed for a symmetric 
band c k  = -1 + 21kj, k E [-1,1], 6~ = 0, one impurity sitE and Ns = 50 sites in the 
conduction band. The choice of the discrete Ns values of k in the conduction band does 
not affect the results very much. We took them equidistant in the interval 1-1, 11. In 
the thermodynamic limit these parameters correspond to a 2% density of impurities and 
a constant density of states in the conduction band. The hybridization energies scale as 
VK = V(O)/fi in this limit. We have set V(0)  = 2. 

Figures 1 to 4 show numerical solutions of the flow equations for a starting value 
U ( 0 )  = 5. Corresponding to the initial value of Ed, one finds, e.g., the local-moment fixed 
point (figures 1 and 2) or the free-electron fixed point (figures 3 and 4). In either case the 
off-diagonal elements v k  vanish in the limit I + CO, as intended by the continuous unitary 
transformations. One notices in figure 2 that this convergence of the Vk gets much faster 
once Ed is below the Fermi level. This is due to the last term in (3.24). 

OD0 0.- 0.m 0,11 

Flow parameter I 

- 14 

- 12 

0 
- 10 ; - 

m _. 
- 8 6  

- 6  s 
E 
E. 

C 

- 4  

- 2  

- 0  

Figure 1. Local-moment fixed point. Flow of 
the conduction-band energies and of the impurity-site 
energy. 

Figure 2. Local-moment fixed point. Flow of the on- 
site repulsion U and of the hybridization Vk. 

In the free-electron case the convergence of some v k  is much slower since we ate 
coming close to the crossover to the strong-coupling fixed point. For the same reason U 
gets very large. But this could only be noticed if the impurity site were twice occupied, 
which is a very high-lying excitation for this fixed point anyway which we cannot hope to 
describe by the model. The case shown in figures 3 and 4 lies near the crossover to the 
strong-coupling fixed point. If Ed@) is larger, the convergence is faster and the final value 
of U is smaller. If E d ( @  is smaller, c d ( l )  intersects the curve of the first band energy and 
cd(00) lies in the band. 

Finally, one can wonder about the attraction regions belonging to the different fixed 
points. There ate four parameters in our model: the bandwidth of the conduction band, 
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J 

-. 
c 
L 

c 1 
. .. I 

- 

- 3000 

0 
? - 2000 

3 
3 

- 1000 = 
5 e 

- 0  

Figure 3. Free-electron fixed point. Flow of Figure 4. Free-electron fixed point. Flow of the on-site 
the conduction-band energies and of the impurity-site 
energy. 

repulsion U and of the hybridimtion h. 

the initial values of cd, U and of the average hybridization V .  Obviously only three of 
these parameters can be independent since the energy scale is arbitrary. In our case the 
bandwidth is fixed. Of the remaining three parameters only two are really independent 
because the flow equations connect unitarily equivalent Hamiltonians with different values 
of these parameters (the bandwidth hardly changes as mentioned before for this small density 
of impurities). Therefore we can restrict ourselves to investigating the attraction regions for 
a fixed value of V(O),  here V(0)  = 2. 

In figure 5 the approximate boundaries of the parameter sets belonging to the local 
moment or the free-electron behaviour are drawn in the (ca(O), U(0))-plane. In between 
lies the region of the strong-coupling fixed point. Since our numerical algorithm converges 
very slowly in this region (compare figure 4), figure 5 shall mainly give a qualitative 
impression of this region. 

4. Relevant and irrelevant operators 

In the commutator [ q ,  HI, many terms have been neglected and it is not clear a priori 
whether or not these terms are relevant for the physical behaviour of the model. To 
investigate this question, we add contributions of this type to the Hamiltonian and write 
down the flow equations for the new Hamiltonian. A detailed derivation of the new flow 
equations is given in the appendix. 

A simple contribution in [q, HI that has been neglected is of the form Ck.q,n vk,q : 
c~.&,,~ : . It will turn out that such a contribution is irrelevant for the model. To see this t 
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3000 

~ 

1000 = 

0 

Figure 5. Approximate boundaries Of the parameter 
sets belonging to the different fixed paint. 
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First, one observes Vk,q(m) = 0 if (6k-Eq) # 0. Vk.q does not vanish for e -+ 00 if 6k = cq. 
But this does not cause any problems, since nevertheless the second term in (4.2) tends to 
zero for e + W. There are no diverging matrix elements in this limit. The equation for 
U is the same as before and IUI increases. In the equation for vk additional contributions 
occur, but they vanish for e + 00 so that h vanishes if nd  = $ or 6k # &. Finally, 
the additional contribution J&o vk.q : c!+&,~ : to the Hamiltonian does not change the 
behaviour of the system. 6 k ,  & and U are 'renormalized' somewhat, but the behaviour of 
the system remains the same. Only in the non-interacting case is xk,q,o vk,q : c~,,cq,, : a 
relevant contribution to the Hamiltonian. 

S K Kehrein and A Mielke 

The next contribution in [q ,  HI that was neglected is a term of the form 

cL,,d!.,d-,dc : + : d~d!,d-,Ck., :) . 
k," 

Such a contribution only occurs if U # 0. But if U # 0 initially U always increases. 
Therefore we should expect that matrix elements between states with nd = 4 and nd = 1 
are not important. This means that this contribution is likely to be irrelevant for all fixed 
points. To see this we add such a term to H and H'. The flow equations are then 

dck 
de 2(<k - zd)(vivk + nd(1 - nd)vF)') - - nd)U v,'z'(& f v{) (4.7) -= 

+ 4 G [ ( l  -3nd(l--d))U-(1 -znd)(~k--h)]VF)OZ (4.10) 
k 

(2) 
dVk=-[nd(l -nd)UZ+(6k - & - ( I  -2nd)(1)2]VF)+[2u(6k -?d)-(l -2nd)U'IVi 

+ ~ ( ( V K  - v{)vf' - (vq - v,)v,'")(vq + (1 -2nd)Vf)) 
de 

4 

+ C ( v k v i -  vqvk) r v'2' q . (4.11) 

Although these equations look complicated, they are easy to analyse. Let us first look at 
(4.10). U increases as long as V{ and VF) do not vanish. On the other hand, the first 
term in (4.11) guarantees that V,'" tends to zero in the limit e -+ CO. For sufficiently 

4 
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large U the dominant contribution is - -UzV,'z' so that V r )  vanishes rapidly. This shows 
that for fld = ~4~ the behaviour of Vi" is similar to the behaviour of Vk. In (4.7), (4.8) 
and (4.10) the additional terms containing Vkvi*) and V?)' are similar to the original con- 
tributions containing V2. This shows that the only effect of the additional contribution 
Ck,: V,"'(: ci,,d!.,d-,d, : + : dAd',d-,ck,, :) to the Hamiltonian is a renormalization of 
4,  G d ,  and U ,  which also occurs if one changes, for example, the initial values of vk. If 
nd = 0 or nd = 1 we saw that vk does not necessarily vanish for e --f CO. In contrast 
VF) tends to zero in this case too. Furthermore, the contributions on the right-hand side of 
(4.7) and (4.9) containing V,'" vanish. Consequently, the behaviour of k and vk does not 
change significantly. Only 

In the non-interacting case (U = 0) the inhomogeneity in (4.1 1) vanishes. Consequently, 
VF) = 0 if initially V f ' ( 0 )  = 0. This shows that the additional contribution 

and U are renormalized. 

Vi"(: C~ , ,d~ ,d - ,d ,  : + : dLd!,d-,ck,, :) 
k , =  

to the Hamiltonian is irrelevant for the fixed points described above. 
Another contribution on the right-hand side of (3.12) contains 

(: Ci,,C:,-,d-nds :-f : d~d!.,,Cq,-oCk,,, :). 

This contribution may be analysed similarly and it turns out that it is irrelevant. This should 
have been expected since, as in the previous case, such a term contains matrix elements 
between two states with different nd. Since U becomes large, these matrix elements tend 
to zero rapidly. 

The last contribution in (3.12) not taken into account until now is more important. It is 
of the form 

(4.12) vk,9(. (2) . Ck," 1 dt -" d -4q.m : - : Ck,,d~,dmCq,-, t :) 
k.9.n 

and may be written as a linear combination of a spin-spin interaction and a density-density 
interaction. A contribution of this form was first obtained by Schrieffer and Wolff [2]. They 
introduced a unitary transformation in order to eliminate the matrix elements v k .  As a result 
of this transformation one obtains a complicated Hamiltonian, which reduces to the original 
one with Vk = 0 and an additional contribution of the form (4.12) if Ivkl is small. One 
should expect that these terms are important in our approach as well. To see this, we add 
such a term to H and H' in (3.1) and (3.7). The flow equations are obtained as before, 

(4.13) 

(4.14) 



To analyse these equations let us first consider the case nd = 4. In this case we have 
!I{ = Vk for all k and consequently only the first two terms on the right-hand side of (4.17) 
do not vanish. The second term is the inhomooeneity, it vanishes in the limit 2 -+ w, 
but it yields a non-vanishing contribution to Vi: for finite 8 .  Due to the first term, this 
contribution will tend to zero for e + cc if ~k # c9. But if cy  = eq, Vk,q remains finite. 
It represents an antiferromagnetic interaction of the local moment in the defect state with 
electrons in the band. This antiferromagnetic exchange coupling is well known from the 
Kondo problem. In (4.16) the third term vanishes. The second term is positive and tends to 
zero if e goes to infinity. Consequently the resulting U ( w )  will be somewhat larger than 
before. As before, Vk vanishes rapidly due to the first term, 6k and & are renormalized 
somewhat. This shows that in the case of the local-moment fixed point, the additional 
contribution (4.12) is marginal. It is important for the physical behaviour of the system, 
but the other parameters of the model are not changed in such a way that the system 
behaves completely different. We already mentioned that Schrieffer and Wolff obtained a 
term similar to (4.12). To be able to compare our result with the result in [Z], we restrict 
ourselves to the symmetric case and to k-vectors near the Fermi surface. Then (4.17) yields 

(4.18) 

If Vf are small we can neglect contributions of higher order in vk as in [Z]. Therefore we 
have U sz U ( 0 )  and consequently VkF a hJ0) exp(-aU2(0)t). Inserting this in (4.18) we 
obtain 

(2) 

d Vk% - - 2 q ; .  
de 

(4.19) 

which is exactly the result in [Z]. In the asymmetric case the analysis is more difficult 
but we expect that our result differs from their result in [2]. Especially if q lies in the 
conduction band, the Schrieffer-Wolff transformation is not well defined in contrast to our 
transformation. We would like to mention that the Schrieffer-Wolff transformation leads 
to other contributions to H similar to the irrelevant trems in our case. These additional 
contributions were neglected in [Z]. 
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In the strong-coupling fixed point, we have nd = 0 or nd = 1. Furthermore, V; = 0 
for some values of k. Consequently, due to the third and fourth term on the right-hand side 
of (4.17), Vi: + 0 if 1 + 03 for all k and q. In this case the other parameters of the 
model are changed somewhat, but the contribution (4.12) vanishes. This is in contrast to 
the free-electron fixed point, where nd = 0 or nd = 1 but V i  = Vk for all k. Here VK.: does 
not vanish for some values of k and q. But there is no magnetic moment in the defect state 
and therefore an antiferromagnetic interaction plays no role. To summarize, the contribution 
(4.12) is irrelevant in the strong-coupling fixed point and in the free-electron fixed point. 

5. Discussion of the results 

In the two preceeding sections we calculated and analysed flow equations for the Anderson 
model. These fixed points and the 
corresponding relevant, marginal or irrelevant operators may be compared with results 
obtained using renormalization methods by Krishnamurty et a1 [5 ] .  But one has to be 
careful since the idea of a fixed point differs in both cases. In a renormalization-goup 
treatment a fixed point is a single point in the parameter space, whereas in our case a fixed 
point corresponds to a class of points in the parameter space. It will turn out that the fixed 
points in [5 ]  are prototypes in the classes we obtain. Furthermore, we should mention that 
in our notation, nd is a factor of 2 smaller than in [5 ] .  

The free-electronfuledpoint. In this case we obtain either Ed. ed + U > 6k for all k, nd = 0, 
or Edl Ed+ U -= for all k, nd = 1. Furthermore, v k  = 0 for all k. This fixed point is stable, 
all the operators we discussed in section 4 are irrelevant. The case nd = 0 corresponds to the 
frozen-impurity fixed point in [ 5 ] ,  which is also stable and has only irrelevant operators. In 
[5 ]  this fixed point in characterized by cd + bo, U = 0 and v k  = 0. The physical behaviour 
of such a system is a prototype of the class of final parameters we called free-electron fixed 
point. 

The strong-couplingjixed point. In this case nd = 0 or = 1, but Ed or Ed + U lies in the 
conduction band. The hybridization v k  vanishes unless &j = ~ q ,  for these values of k the 
final value of Vk is larger than its initial value. All the other operators are irrelevant in this 
case. It corresponds to the strong-coupling fixed point in [5]  where some of the Vk tend to 
infinity for fixed Ed and U .  

The local-momenrjixedpoint. In this case we have nd = 4. The defect state is occupied 
with a single electron, representing the local moment. v k  = 0 for all k in this case. The 
symmetric case falls into this class too. We found a marginal operator which describes an 
antiferromagnetic ifieraction of the local moment in the defect state with the electrons in 
the conduction band and a density-density interaction of the electron in the defect state 
with the electrons in the band. Due to this interaction a singlet is formed. The singlet 
formation takes place with electrons in the band for which EX = &. The energy gain due to 
the singlet formation gives the Kondo temperature. If the temperature is above the Kondo 
temperature, triplet states are occupied. This is the usual explanation of the Kondo effect. 
The local-moment fixed point was found in [5] too; the antiferromagnetic interaction is 
marginal. 

The non-interacting jixed point It is given by U = 0. It is unstable with respect to the 
electron-electron interaction in the defect state. Other relevant operators are the additional 
hybridization of band electrons and the antiferromagnetic coupling between the defect state 

Especially we obtained several fixed points. 
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and the band electrons. The special case where = 0 and Vk = 0 is called the free-orbital 
fixed point in [5]. It is unstable with respect to the operators mentioned above. 

In [5] another fixed point is mentioned, the so-called valence-fluctuation fixed point. It 
is obtained for Ed = 0 and Vk = 0, U large. This fixed point occurs in our case as well. But 
it is unstable with respect to the hybridization Vk, and, by definiton, unstable with respect 
to changes in <d. Since we introduced the flow equations to bring the Hamiltonian closer 
to diagonalization, the case Vk = 0 is trivial from our point of view. 

6. Conclusions 

The aim of this paper was to show that Wegner's original flow equations [l] together with 
a simple approximation yield approximate flow equations which are simple to analyse. The 
approximation consists of neglecting terms in the flow equation which do not occur in the 
initial Hamiltonian. From a physical point of view this may be reasonable, since all of 
these terms have a simple physical meaning and should occur in a more realistic model. 
But one does not expect significantly different behaviour of the system if one neglects these 
terms in the original Hamiltonian. Therefore they might bk irrelevant for the flow equations 
too. From a mathematical point of view the approximation is not yet understood. We only 
showed that for irrelevant terms our results are equivalent to a second-order perturbational 
treatment if the off-diagonal matrix elements are small. But since q + 0 as 2 --f CO, all 
the matrix elements of H are functions of without any pole that tend to a certain value 
for t + CO. Also the approximate flow equations have this property. Therefore one should 
be able to estimate the error made by the approximation. Further investigations in this 
direction will be done. 

On the other hand we are able to discuss the relevance of the neglected terms 
a posteriori. It is possible to introduce these terms in the flow equations and to study 
the effect of these terms. If a contribution is relevant, it cannot be simply included in H' 
since divergencies occur. For example Vk is a relevant contribution in the strong-coupling 
fixed point. If a contribution does only renormalize the other matrix elements and vanishes 
for e + M, it is irrelevant. If it does not vanish it is marginal. I n  our example, the 
Anderson model, we were able to show that the results obtained in this way agree with 
results from a numerical renormalization-group approach [5]. The main advantage of our 
approach is that flow equations are obtained without any difficulty. One simply has to 
calculate two commutators. Furthermore, the flow equations (3.13H3.16) may easily be 
generalized to the case of many defects or to the case of degenerate defect states. In 
particular, the limit where the degeneracy is infinite has been studied (see e.g. [4] and the 
references therein). This limit can be studied using our approach as well and it is possible 
to derive flow equations without any approximation. We will use this limit in a subsequent 
paper to test our approximation. 
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Appendix A. Derivation of the flow equations in section 4 

In this appendix we derive the flow equations presented in section 4. The new contribution 
is added to H and H' and we calculate the new 7 = [ H ,  H'] .  Then the commutator [q, HI 
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contains several new terms compared to (3.12). Some of these new terms are of a form 
different from the contributions to H .  These terms are neglected. The other terms are 
calculated, since they contribute to the derivative of H with respect to e .  Then the new 
flow equations are given. 

H = Ek : CL,,Ck,n : + h : dLd, : + v k ( :  cL,,,dm : + : dLCk.,, :) 
k.o 0 k.= 

V k = ( € k  - ~ d ) v , ' + c v k . q ( V ; - v q )  (-4.4) 

qk,q = :(Eh -Eq)Vlq f f ( v k v ; -  V9v$ 64.5) 

(-4.6) Vk - 
New contributions to [q, HI are 
- 

q 

(2) - -U vi, 

1 
Vqvk .q( :  c~.,dg : + : d h . n  :) + 2 

I.q,o k.q.p.o 
( V k , p v p , q  + 9 q . p V p . k )  : c~,&q,o : 

- i$)Vk,q(: c ~ , , d I , d - , d c  : + : d i d t , d - , C k , n  :) . (A.7) 

The last term docs not contribute to the flow equations since H does not contain a term of 
this form. It will be neglected. The first term contributes to the derivative of v k ,  the second 
term to the derivative of 

k.q.n 

Thus we obtain 

dU - = -4 $ ) V k .  
de k 

(A.12) 

Using the expression for the different matrix elements of 9 given above we obtain (4.2)- 
(4.6). 



(A.20) 

The flow equations are now 
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(A.23) 

(A.%) 

(A.25) 

(A.26) 

(A.27) 

(A.28) 

(A.29) 

(A.30) 

(A.3 1) 



Now the flow equations are 

(A.35) 

As before, we obtain (4.13)-(4.17) 
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